Physics of AGN jets in the Fermi era

Maria Petropoulou

L. Spitzer Postdoctoral Fellow

Princeton University

8th International Fermi Symposium, Baltimore, USA

Relativistic jets are ubiquitous!

ctive galactic nuclei (AGN)

X-ray binaries (XRBs)

Gamma ray bursts (GRB

This talk; see also talks by
I. Christie, H. Zhang, E. Meyer
& more in AGN sessions

See talks by Wilson-Hodge, H. Zhou & more in Galactic sessions

See talks by A. Beloborodov, B. Zhang, P. Beniamini & more in GRB sessions

Jet power $\sim 10^{44} - 10^{48} \text{ erg s}^{-1}$

 $\sim 10^{38} \text{ erg s}^{-1}$

 $\sim 10^{52} \text{ erg s}^{-1}$

Lorentz factor ~ 3 - 30

- 3

~ 300 - 1000

Extragalactic y-ray sky dominated by AGN

Blazar contribution to the extragalactic γ-ray b

~ 100% at >100 GeV

~ 50 % at <100 GeV

Highlights from Fermi era

Neutrinos from blazar jets

(e.g. Mannheim '95, Halzen & Zaş '97, Atoyan & Dermer '01, Murase+14, Petropoulou+15, Padovani, MP+15, Gao+15)

Production mechanism

Ideal environment for v production

- *Powerful jets have the potential to accelerate and confine high-energy protons
- *Many target photon fields are available (from e.g. jet , BLR, torus, disk)

The multi-messenger flare of TXS 0506+056

IceCube Collaboration, '18, Science

See talk by A. Franckowiak

- .IC 170922A: track event with $E_v \sim 300$ TeV (ang. res.
- Automatic public alert via AMON/GCN
- .Fermi-LAT reported TXS 0506+056 was in a flaring st
- .Many MW observations followed

Interpretations

Photo-hadronic models

- Ansoldi+18 for MAGIC, ApJL
- .Cerruti+18 (1807.04335)
- .Gao+18 (1807.04275)
- .Keivani, Murase, MP+18, ApJ
- Murase, Oikonomou, MP '18, ApJ

Hadro-nuclear models

- .He+18 (1808.04330)
- ·Liu+18 (1807.05113)
- ·Murase, Oikonomou, MP '18, ApJ
- .Sahakyan '18, ApJ

1046 [erg cm⁻² s⁻¹] 10⁴⁵ erg s⁻¹ More in Keivani's talk! 1044 10⁻¹² 10⁵ 10¹⁵

Keivani+18¹⁰ApJ

10¹⁰

ε [eV]

 10^{-10}

 $F_{v} < 2 \times 10^{-12} \, erg/cm^{2}/s$

 $U_p/U_e > 300$

 $E_{p,max} < \overline{0.3EeV}$

Fermi detects sub-orbital variability from 3C 279

Challenging for standard models because of:

- * Minute-scale duration
- * High γ-ray luminosity (~ 10⁴⁹ erg s⁻¹)
- * High Compton ratio (A_C~100)

Status of blazar modeling

Particle acceleration

Photon spectrum

What's up next?

Build a bottom-up theory for the origin of "blobs"

Test theory predictions against spectro-temporal properties of blazar emission

"The blob"

Energy dissipation in jets

Shocks

Magnetic reconnection

- *Internal shocks: time-dependent energy injection to the jet *Magnetic kink instability at jet interior
- *Recollimation shocks: abrupt changes in the density of external medium *Striped wind structure of jet

★(e.g. Kazanas & Ellison'86, ApJ; Blandford & Eichler'87; PhR, Kirk+98; A&A; Ostrowski'98, A&A; Boettcher & Dermer' 10, ApJ ★(e.g. Romanova & Lovelace '92, A&A; Eichler'93, ApJ; B

Magnetic reconnection

- * Magnetized plasma enters the reconnection region
- * Plasma leaves the reconnection region at the Alfvén speed
- * Magnetic energy is transformed to heat, bulk plasma kinetic energy and non-thermal particle energy

Relativistic regime

Hole

Disk

Disk

$$v_A \approx c$$

$$\sigma = \frac{B_0^2}{4\pi n_0 mc^2} > 1$$

Efficient energy dissipation

Efficient energy dissipation

Radiative power is ~1-10% of jet power

★it transfers ~ 50% of the flow energy (electron

*Efficiency decreases with increasing guide fie

Plasmoids in reconnection: the blobs of blazar emission

(Sironi, MP, Giannios' 15; Sironi, Giannios, MP '16)

The layer fragments into plasmoids (Loureiro+07,PhPI; Uzdensky+10, PhRvL)

Plasmoids move relativistically in the jet frame (e.g. Giannios'09, MNRAS; Giannios '13, MN

Plasmoids have a power-law distribution of sizes (e.g. Uzdensky+10,PhRvL; Loureiro+11,

From microscoPIC to large scales

Self-similarity

Extrapolation to large scales

Variability at multiple scales

Each plasmoid produces a flare of characteristic duration and flux

(Giannios '09; Giannios'13; Petropoulou+16; Christie, MP+18)

Each reconnection layer produces a chain of plasmoids

(Sironi, MP, Giannios '15; Sironi, Giannios, MP '16 Petropoulou+18; Christie, MP+18)

$$L_{pk} \approx \frac{f_{rec}L_j}{8R^2c\beta_j\Gamma_j^2}\beta_g c w_p^2 \delta_p^4$$

- .Fast flares on top of slowly evolving envelope
- .Physical model for multi-timescale variability in jets

More in Christie's talk!

Future prospects

Summary

Fermi is the only mission that can perform long-term monitoring of blazar jets.

Timing analysis of light curvesFlare properties

Synergy of *Fermi* with Cherenkov telescopes delivers high-quality γ-ray spectra extending more than 4 decades in energy.

Spectral breaks or attenuation featuresMultiple spectral components

Fermi's role in multi-messenger observations of blazar jets is central, as demonstrated by the flare of TXS 0506+056.

Cosmic-ray content of jetsCosmic-ray acceleration in jets

Fermi as an integral part in the map of future multi-messenger missions.

Back-up slides

The γ-ray spectrum of Centaurus A

- .Closest radio galaxy (FR I type)
- $D=3.8 \pm 0.1$ Mpc (Harris+10, PASA)
- .VHE γ-ray source (Aharonian+09, ApJ)
- .Fermi after launch confirmed early EGRET detection

SSC modeling of Centaurus A

Cen A as misaligned blazar → SSC modeling of core emission

Parameter	Model		
	SSC	SSC (Abdo et al. 2010a)	
R (cm)	4×10^{15}	3×10^{15}	
B (G)	6	6.2	
δ	1	1	
$\gamma_{ m e,min}$	1.3×10^{3}	300	
$\gamma_{ m br}$	_	800	
$\gamma_{\rm e,max}$	10^{6}	10^{8}	
$p_{\mathrm{e},1}$	_	1.8	
$p_{\mathrm{e,2}}$	4.3	4.3	
$\ell_{\mathrm{e}}^{\mathrm{inj}}$	6.3×10^{-3}	8×10^{-3}	
ℓ_B	4.6×10^{-3}	3.7×10^{-3}	

Large viewing angle → Weak Doppler boosting

 $L_{obs} \propto \delta^4 L_{e,co} \approx L_{e,co}$

 L_{obs} high $\rightarrow L_{e,co}$ high \rightarrow 2nd order SSC not negligible!

Alternative interpretations

Inner jet models

- Leptonic processes in black-hole magnetosphere (Rieg
- .SSC from 2 zones (Joshi+18, MNRAS Letters; HESS & Fel
- •Millisecond pulsar population (Brown+17, A&A)
- •DM annihilation (Brown+17, A&A)
- ICS cascades on dusty tori (Roustazadeh & Boettcher '11,

.ICS on background photons (Hardcastle

Large-scale jet models

X-rays from large-scale AGN jets

Chandra 0.4-8 keV

How are X-rays being produced?

IC/CMB model (Tavecchio+00, ApJL; Celotti+01, MNRAS)

Electron synchrotron models (e.g.Harris+04,ApJ; Hardcastle'06, MNRAS)

- .Strong beaming is not re
- 2 electron distributions
- •2nd electron distribution
- .Less energy-demanding
- .Freedom in GeV flux pre

Fermi rules out the IC/CMB model

Neutrino properties in a nutshell

Neutrino spectrum depends on:

- *Density of target photons
- *Energy spectrum of target photons
- *Energy spectrum of protons

Typical neutrino energies

Production efficiency

Jet photons:

$$E_{\nu} \approx 0.05 E_{p} \geqslant 90 \textit{PeV} \Gamma_{1}^{2} (\epsilon_{s}/10 \, \textit{eV})^{-1}$$

BLR photons:

$$\mathbf{E}_{\mathbf{v}} \approx \mathbf{0.05E_{\mathbf{p}}} \geqslant \mathbf{0.9} PeV (\mathbf{\epsilon}_{BLR}/\mathbf{10} \ eV)^{-1}$$

$$\mathbf{f}_{p\gamma} \propto rac{\mathbf{L}_{ph}}{\mathbf{\epsilon}_{ph} \mathbf{R} \mathbf{\delta}^3} \propto rac{\mathbf{L}_{ph}}{\mathbf{\epsilon}_{ph} \mathbf{t_v} \mathbf{\delta}^4}$$

$$\mathbf{f}_{p\gamma} \propto \frac{\mathbf{L}_{BLR}}{\mathbf{\epsilon}_{BLR} \mathbf{R}_{BLR}}$$

Effective areas of the analyses

Up-going events

Larger statistical sample
Larger effective volume
Atm. background not removed
Poorer energy determination

Smaller statistical sample Smaller effective volume Atm. Background removed

Predicted #v in 5yr IceCube livetime

Major GeV flares

No.	T (days)	$v_{\mu} + \bar{v}_{\mu}$	$P_{N_{\nu}\geq 1}(\%)$
Flares 1a+1b	105	0.61 ± 0.16	46 ± 8
Flare 2	70	0.32 ± 0.07	27 ± 5
Flare 3	98	0.26 ± 0.05	23 ± 4
Flares 4a+4b	112	0.26 ± 0.05	23 ± 4
∑ Flares	385	1.46 ± 0.32	77 ± 7

Without GeV major flares

Season	T	(days)	$\nu_{\mu} + \bar{\nu}_{\mu}$	$P_{N_{\nu}\geq 1}(\%)^{\dagger}$
06/2010-05/2011		364	0.43 ± 0.06	34 ± 4
06/2011-05/2012		364	0.38 ± 0.05	32 ± 3
06/2012-05/2013		371	0.71 ± 0.11	51 ± 5

* Similar probability for detecting at least%/คิยันก็คิยใช้าดางิเชษ 20 ใว สีสาย aloังษ ลักด

* Still <50%

J			LUTZ Hare	alone and
	06/2014-05/2015	350	0.47 ± 0.06	38 ± 4
	∑ w/o Flares	1834 ^a	2.73 ± 0.38	94 ± 2
_	\sum w Flares	1834	3.59 ± 0.60	97 ± 2

Constraining the model

Q: What means a neutrino non-detection of Mrk 421?

A: Correlation between >1PeV v and GeV y-rays differs in major flares

Much lower power is carried by CR in blazar jets

100 TeV v flux (normalized to 4e-10 erg/s/cm2)

T (yr) needed for IceCube y detection

at 90% (95%) CL

Upper limits on CR power given a non-de N (> 100 TeV) from Mrk 421 in X years.

X (yr)	ζ_X		$L_{\rm p,X}~({\rm erg/s})$		
	90%	95%	90%	95 %	
6	0.71	0.9	6.2×10^{47}	7.8×10^{47}	
8	0.53	0.68	4.6×10^{47}	5.9×10^{47}	
10	0.43	0.54	3.7×10^{47}	4.7×10^{47}	
20	0.21	0.27	1.8×10^{47}	2.3×10^{47}	

Relativistic magnetized shocks

Magnetization

No particle acceleration for super-luminal shocks

Dissipation efficiency

Equipartition between pair

Subluminal shocks

 $\cos\theta_1 < v_1/c$

(Sironi & Spitkovsky, 2009, MNRAS

Particle-in-Cell simulations

- No approximations; full plasma physics of ions and electrons
- •Tiny length scales need to be resolved → Largé & expensive simulations
- •Limited time coverage and spatial domains

Plasmoid acceleration

Large

$$\beta_{\rm co}\Gamma_{\rm co} \approx f\left(\frac{X'}{w''}\right) \equiv \sqrt{\sigma} \tanh\left(\frac{\beta_{\rm acc}}{\sqrt{\sigma}} \frac{X' - X'_0}{w''}\right)$$

- Acceleration due to tension force of reconnected B-field
- Universal acceleration profile
- Acceleration depends on: size & location

Plasmoid distributions

Distribution of sizes

Distribution of 4-velocities

